18F-FAZA PET imaging response tracks the reoxygenation of tumors in mice upon treatment with the mitochondrial complex I inhibitor BAY 87-2243.

نویسندگان

  • Edwin Chang
  • Hongguang Liu
  • Kerstin Unterschemmann
  • Peter Ellinghaus
  • Shuanglong Liu
  • Volker Gekeler
  • Zhen Cheng
  • Dietmar Berndorff
  • Sanjiv S Gambhir
چکیده

PURPOSE We describe a noninvasive PET imaging method that monitors early therapeutic efficacy of BAY 87-2243, a novel small-molecule inhibitor of mitochondrial complex I as a function of hypoxia-inducible factor-1α (HIF1α) activity. EXPERIMENTAL DESIGN Four PET tracers [(18)F-FDG, (18)F-Fpp(RGD)2, (18)F-FLT, and (18)F-FAZA] were assessed for uptake into tumor xenografts of drug-responsive (H460, PC3) or drug-resistant (786-0) carcinoma cells. Mice were treated with BAY 87-2243 or vehicle. At each point, RNA from treated and vehicle H460 tumor xenografts (n = 3 each) was isolated and analyzed for target genes. RESULTS Significant changes in uptake of (18)F-FAZA, (18)F-FLT, and (18)F-Fpp(RGD)2 (P < 0.01) occurred with BAY 87-2243 treatment with (18)F-FAZA being the most prominent. (18)F-FDG uptake was unaffected. (18)F-FAZA tumor uptake declined by 55% to 70% (1.21% ± 0.10%ID/g to 0.35 ± 0.1%ID/g; n = 6, vehicle vs. treatment) in both H460 (P < 0.001) and PC3 (P < 0.05) xenografts 1 to 3 days after drug administration. (18)F-FAZA uptake in 786-0 xenografts was unaffected. Decline occurred before significant differences in tumor volume, thus suggesting (18)F-FAZA decrease reflected early changes in tumor metabolism. BAY 87-2243 reduced expression of hypoxia-regulated genes CA IX, ANGPTL4, and EGLN-3 by 99%, 93%, and 83%, respectively (P < 0.001 for all), which corresponds with reduced (18)F-FAZA uptake upon drug treatment. Heterogeneous expression of genes associated with glucose metabolism, vessel density, and proliferation was observed. CONCLUSIONS Our studies suggest suitability of (18)F-FAZA-PET as an early pharmacodynamic monitor on the efficacy of anticancer agents that target the mitochondrial complex I and intratumor oxygen levels (e.g., BAY 87-2243).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Personalized Medicine and Imaging F-FAZA PET Imaging Response Tracks the Reoxygenation of Tumors in Mice upon Treatment with the Mitochondrial Complex I Inhibitor

Purpose:We describe a noninvasive PET imaging method that monitors early therapeutic efficacy of BAY 87-2243, a novel smallmolecule inhibitor of mitochondrial complex I as a function of hypoxia-inducible factor-1a (HIF1a) activity. Experimental Design: Four PET tracers [F-FDG, F-Fpp (RGD)2, F-FLT, and F-FAZA] were assessed for uptake into tumor xenografts of drug-responsive (H460, PC3) or drug-...

متن کامل

BAY 87–2243, a novel inhibitor of hypoxia-induced gene activation, improves local tumor control after fractionated irradiation in a schedule-dependent manner in head and neck human xenografts

BACKGROUND The transcription factor hypoxia-inducible factor-1 (HIF-1) pathway plays an important role in tumor response to cytotoxic treatments. We investigated the effects of a novel small molecule inhibitor of mitochondrial complex I and hypoxia-induced HIF-1 activity BAY-87-2243, on tumor microenvironment and response of human squamous cell carcinoma (hSCC) to clinically relevant fractionat...

متن کامل

Hypoxia imaging with 18F-FAZA PET/CT predicts radiotherapy response in esophageal adenocarcinoma xenografts

BACKGROUND Esophageal cancer is an aggressive disease with poor survival rates. A more patient-tailored approach based on predictive biomarkers could improve outcome. We aimed to predict radiotherapy (RT) response by imaging tumor hypoxia with 18F-FAZA PET/CT in an esophageal adenocarcinoma (EAC) mouse model. Additionally, we investigated the radiosensitizing effect of the hypoxia modifier nimo...

متن کامل

Targeting mitochondrial complex I using BAY 87-2243 reduces melanoma tumor growth

BACKGROUND Numerous studies have demonstrated that functional mitochondria are required for tumorigenesis, suggesting that mitochondrial oxidative phosphorylation (OXPHOS) might be a potential target for cancer therapy. In this study, we investigated the effects of BAY 87-2243, a small molecule that inhibits the first OXPHOS enzyme (complex I), in melanoma in vitro and in vivo. RESULTS BAY 87...

متن کامل

BAY 87-2243, a highly potent and selective inhibitor of hypoxia-induced gene activation has antitumor activities by inhibition of mitochondrial complex I

The activation of the transcription factor hypoxia-inducible factor-1 (HIF-1) plays an essential role in tumor development, tumor progression, and resistance to chemo- and radiotherapy. In order to identify compounds targeting the HIF pathway, a small molecule library was screened using a luciferase-driven HIF-1 reporter cell line under hypoxia. The high-throughput screening led to the identifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 2015